Metadata-Version: 2.1 Name: llama-index-readers-llama-parse Version: 0.4.0 Summary: llama-index readers llama-parse integration License: MIT Keywords: PDF,llama,llama-parse,parse Author: Logan Markewich Author-email: logan@runllama.ai Requires-Python: >=3.9,<4.0 Classifier: License :: OSI Approved :: MIT License Classifier: Programming Language :: Python :: 3 Classifier: Programming Language :: Python :: 3.9 Classifier: Programming Language :: Python :: 3.10 Classifier: Programming Language :: Python :: 3.11 Classifier: Programming Language :: Python :: 3.12 Requires-Dist: llama-index-core (>=0.12.0,<0.13.0) Requires-Dist: llama-parse (>=0.5.0) Description-Content-Type: text/markdown # LlamaParse LlamaParse is an API created by LlamaIndex to efficiently parse and represent files for efficient retrieval and context augmentation using LlamaIndex frameworks. LlamaParse directly integrates with [LlamaIndex](https://github.com/run-llama/llama_index). Currently available for **free**. Try it out today! ## Getting Started First, login and get an api-key from `https://cloud.llamaindex.ai`. Then, make sure you have the latest LlamaIndex version installed. **NOTE:** If you are upgrading from v0.9.X, we recommend following our [migration guide](../../../docs/docs/getting_started/v0_10_0_migration.md), as well as uninstalling your previous version first. ``` pip uninstall llama-index # run this if upgrading from v0.9.x or older pip install -U llama-index --upgrade --no-cache-dir --force-reinstall ``` Lastly, install the package: `pip install llama-parse` Now you can run the following to parse your first PDF file: ```python import nest_asyncio nest_asyncio.apply() from llama_parse import LlamaParse parser = LlamaParse( api_key="llx-...", # can also be set in your env as LLAMA_CLOUD_API_KEY result_type="markdown", # "markdown" and "text" are available verbose=True, ) # sync documents = parser.load_data("./my_file.pdf") # sync batch documents = parser.load_data(["./my_file1.pdf", "./my_file2.pdf"]) # async documents = await parser.aload_data("./my_file.pdf") # async batch documents = await parser.aload_data(["./my_file1.pdf", "./my_file2.pdf"]) ``` ## Using with `SimpleDirectoryReader` You can also integrate the parser as the default PDF loader in `SimpleDirectoryReader`: ```python import nest_asyncio nest_asyncio.apply() from llama_parse import LlamaParse from llama_index.core import SimpleDirectoryReader parser = LlamaParse( api_key="llx-...", # can also be set in your env as LLAMA_CLOUD_API_KEY result_type="markdown", # "markdown" and "text" are available verbose=True, ) file_extractor = {".pdf": parser} documents = SimpleDirectoryReader( "./data", file_extractor=file_extractor ).load_data() ``` Full documentation for `SimpleDirectoryReader` can be found on the [LlamaIndex Documentation](https://docs.llamaindex.ai/en/stable/module_guides/loading/simpledirectoryreader.html). ## Examples Several end-to-end indexing examples can be found in the examples folder - [Getting Started](https://github.com/run-llama/llama_parse/blob/main/examples/demo_basic.ipynb) - [Advanced RAG Example](https://github.com/run-llama/llama_parse/blob/main/examples/demo_advanced.ipynb) - [Raw API Usage](https://github.com/run-llama/llama_parse/blob/main/examples/demo_api.ipynb) - [JSON MODE](https://github.com/run-llama/llama_parse/blob/main/examples/demo_json.ipynb) ## Terms of Service See the [Terms of Service Here](https://github.com/run-llama/llama_parse/blob/main/TOS.pdf).